For a function g(t), it is given that \(\mathop \smallint \limits

For a function g(t), it is given that \(\mathop \smallint \limits
| For a function g(t), it is given that \(\mathop \smallint \limits_{ - \infty }^{ + \infty } g\left( t \right){e^{ - j\omega t}}dt = \omega {e^{ - 2{\omega ^2}}}\) for any real value \(\omega \).
If, \(y\left( t \right) = \mathop \smallint \limits_{ - \infty }^t g\left( \tau \right)d\tau \), then \(\mathop \smallint \limits_{ - \infty }^\infty y\left( t \right)dt\) is:

A. 0

B. <span class="math-tex">\(-j\)</span>

C. <span class="math-tex">\(-\frac{j}{2}\)</span>

D. <span class="math-tex">\(\frac{j}{2}\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: B

SOLUTION

\(G\left( \omega \right)\) =\(\mathop \smallint \limits_{ - \infty }^{ + \infty } g\left( t \right){e^{ - j\omega t}}dt = \omega {e^{ - 2{\omega ^2}}}\)

As \(G\left( \omega \right)\)\(-G\left( -\omega \right)\)

\(G\left( \omega \right)\) is odd symmetry

\(\therefore \;\mathop \smallint \limits_{ - \infty }^\infty g\left( t \right)dt = 0\)

Now,
\(y\left( t \right) = \mathop \smallint \limits_{ - \infty }^t g\left( \tau \right)d\tau = g\left( t \right)*u\left( t \right)\)
\(\therefore Y\left( {j\omega } \right) = U\left( {j\omega } \right)G\left( {j\omega } \right)\)
\(Y\left( {j\omega } \right) = \omega {e^{ - 2{\omega ^2}}}\left( {\frac{1}{{j\omega }} + \pi \delta \left( \omega \right)} \right)\)
\(Y\left( {j\omega } \right) = \mathop \smallint \limits_{ - \infty }^\infty y\left( t \right){e^{ - j\omega t}}dt \)

\(= \;{e^{ - 2{\omega ^2}}}\left( {\frac{1}{j} + \omega \pi \delta \left( \omega \right)} \right)\)

\( = {e^{ - 2{\omega ^2}}}\left( {\frac{1}{j} + 0.\pi \delta \left( \omega \right)} \right)\)
\( Y\left( {j0} \right) = \mathop \smallint \limits_{ - \infty }^\infty y\left( t \right)dt \)

\(= \frac{1}{j} = - j\)
\(Y\left( 0 \right) = \;\mathop \smallint \limits_{ - \infty }^{ + \infty } g\left( t \right)dt = - j\)
So, (b) is correct